
Auction Algorithm for Bipartite Matching in Data Streaming model
Student: Yu(Ivan) Qin, Supervisor: Dr. Christian Konrad, Project Type: Research

University of Bristol, Department of Computer Science

Abstract
A recent paper [a] introduced a new multi-pass streaming algorithm, called New Auction Algorithm, with strong theoretical grantees in space and

time. Compared with the previous state-of-art algorithm, this new algorithm reduced the number of iteration from O(log log(1/ϵ)ϵ2) to O(1/ϵ2); also it
reduced the space complexity from O(n/ϵ) to O(n).
Our project gives the improvement of this algorithm in engineering, as well as the extension in theoretical analysis. At the same time, we will use
visualization to prove its special feature in data streaming. Moreover, we will illustrate the performance of the algorithm on the real-world dataset
and the worst dataset.

ahttps://epubs.siam.org/doi/pdf/10.1137/1.9781611976496.18

1. Introduction
Today, many algorithms have been helping us solve the problem of
data explosion. Bipartite matching is one of the central questions in
the Graph algorithm. With the Auction algorithm, we can introduce
a solution to find the maximum matching. To solve the problem of
massive data explosion, the algorithm should be suitable for the data
streaming model, in other words, it should be possible to use less
than O(n · ploy log(n)) bits of space.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

SetA SetB

Figure: An example of bipartite matching

2. Motivations and Goals
In academia, bipartite graph maximum matching problems can
migrate to other more difficult problems, such as minimum vertex
cover, maximum independent set, etc.
In industrial, bipartite matching is also actively studied by many
cloud computing companies, such as Facebook, Google, Uber, etc.
The amount of their data in matching problems sometimes exceeds
90,000 operations per second.
Therefore, we are urgent to research the following property:
▶ The properties of this algorithm, such as Time and Space

complexity, number of iterations.
▶ The performance on the real-world and worst-case data set.
▶ The further theoretical analysis of Auction Algorithm.
▶ The Comparison with the state-of-art algorithm.

3. Algorithm

The input bipartite graph is interpreted as a collection of bidders on
one side and items on the other, and the algorithms run an auction
to find a welfare-maximizing assignment of items to bidders, which
translates to a maximum matching of the input graph.
More specifically, in each iteration, we have the following 3 steps:

1. For each unallocated bidder, find the smallest price of its
neighbourhood item and create a graph for them.

2. Find any maximum matching, say with the greedy algorithm.

3. Set allocation and update the price of each matching, if the
item was connected, we reset the previous allocation to empty.

Here are video examples for random graph [b1] and semi-complete
graph [b2].

4. Experiment and Results

▶ Implementation and Improvement
The code is programmed in c++ with boost graph library;
we also create a script to prepossessing the data with SNAP

Dataset; Finally, we used Gnuplot and Tikzpicture to
generate the visualization tools.
The algorithm can still be optimized from an engineering point
of view. We have done the following optimizations:
1. Modify the data structure to HashMap, so that price and allocation are

stored in the node of the graph, which is more convenient to find in O(1).
2. In the first step of iteration of the algorithm, if the graph is empty, we can

exit the loop early.

▶ Dependency on epsilon

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500

N
um

be
r

of
 It

er
at

io
ns

 to
 g

et
 8

0%
 m

at
ch

in
g

Size of maximum matching (size of graph)

Theoretical iteration
e=0.2

The relation between Graph Size and Number of Iteration of Auction Algorithm

 0

 50

 100

 150

 200

 0 100 200 300 400 500

N
um

be
r

of
 It

er
at

io
ns

 to
 g

et
 9

0%
 m

at
ch

in
g

Size of maximum matching (size of graph)

Theoretical iteration
e=0.1

The relation between Graph Size and Number of Iteration of Auction Algorithm

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 M

at
ch

in
g

Iterations

maximum matching
e=0.5

e=0.25
e=0.001

Auction Algorithm in iterations with different epsilon

▶ Performance on Worst-case and Real-world dataset

Nodes Number of Iteration Auction (second) Auction with 90% result (second) Build-in (second)
Semi-complete
(Worst-case)

16 10 0.000052 0.000023 0.000018

Semi-complete 64 209 0.000709 0.000203 0.000116
Semi-complete 256 2965 0.032741 0.004156 0.003191
Semi-complete 1024 44644 0.443631 0.017393 0.019132
Facebook(Real-world) 4039 146 0.038141 0.005573 0.015142
Google plus(Real-world) 107614 920 11.8238 1.73829 8.49265

5. Conclusion
▶ This algorithm is a deterministic data streaming algorithm for

bipartite matching that for any ϵ > 0 (not necessarily a
constant) gives a (1− ϵ)-approximation in O(1/ϵ2) passes and
O(n) space.

▶ The dependency of epsilon is very low, and the iteration is much
smaller than the theoretical announced O(2/ϵ2).

▶ Algorithm performs very fast at the beginning of the big data
set, but very bad at the latter iteration. This algorithm is
currently the best when we encounter answers that only require
a partial (90%, etc.) matching.
▶ For instance, 80% of the maximum matching, no matter the size of the

graph, we only need around 7 iterations.
▶ To achieve 90% of the maximum matching, we need around 30 iterations.

▶ More theoretical analysis and code will be available here [c].

https://epubs.siam.org/doi/pdf/10.1137/1.9781611976496.18
https://youtu.be/Dw-TVHN3lmc
https://youtu.be/pvaFh3txBRE
https://ivanqinyu.github.io/publication/project5

