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Abstract

Matching in bipartite graph is the problem of finding the largest set of edges selected in a
way such that no two edges share the same node. While this problem is well-known and is a
central problem in graph theory algorithms.

However, the most advanced algorithms for this matching problem cannot handle today’s
explosive data growth. Recently, a theoretically optimised streaming algorithm, called the
auction algorithm, can cope with large amounts of data. Our project aims to research this
auction matching algorithm and give a more in-depth analysis and engineering optimisation.

We give worst-case theoretical analyses and validate these analyses through our experiments
and visualisations. Based on the original auction algorithm and analyses, we propose several
points that can be optimised from an engineering perspective.

Finally, through experiments on 15 different datasets, we compare the following three
algorithms in terms of the number of iterations and run-time in practical.

• The current state-of-the-art Edmond’s matching algorithm

• The new auction matching algorithm

• The improved auction matching algorithm
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Chapter 1

Introduction

Data has played a central role in our daily life, and algorithms have been helping us solve

the problem of data explosion. Many Big Data problems require more than the capacity of

traditional computing devices. We urgently need to build new algorithms for handling such

huge information, especially the algorithm should focus on the efficiency of the space and the

time.

One of the algorithms that are well-suited is called data streaming algorithm. As its name

implies, it processes its input in streams and uses very limited space while reducing the iteration

of viewing the entire graph. The Data Streaming algorithm addressing the fundamental problem

is that the RAM of modern computers is much smaller (e.g., a few Gigabytes) than the size of

the massive modern dataset (Terabytes or even Petabytes).

In academia, The bipartite graph matching problem has always been the central problem

of graph theory algorithms. Our project will focus on this problem since it can migrate to

other more complicated problems, such as minimum vertex cover, maximum independent set,

maximum flow etc. As the data around us grows, streaming algorithm is becoming increasingly

important in large scale graph computing.

On the industrial side, it is actively studied in large companies. For example, social networks

like Twitter and Facebook are billions of monthly active users interconnected by trillions

of friendships; Takeaway companies like Uber eat matches orders and delivery man. The

instantaneous amount of data for this problem is enormous, often exceeding 10,000 requests per

second; google’s search engine indexes billions of web pages every day and answers more than

100,000 search queries per second on average, which amounts to more than a trillion queries

per year.

Use Auction Algorithm to solve matching problem was firstly introduced by Dimitri 30

years ago [[3],[13]]. However, a recent paper [2] introduced a new multi-pass streaming algorithm

in 2021, called New Auction Algorithm. The new algorithm is a data streaming algorithm

that offers strong theoretical guarantees in space and time. Compared with the origin Auction

Algorithm, New Auction Algorithm reduced the number of iterations from O( log log(1/ϵ)
ϵ2

) to
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CHAPTER 1. INTRODUCTION

O( 1
ϵ2
); also, it reduced the space complexity from O(n/ϵ) to O(n). Note that ϵ is a decimal

number between 0 and 1, so the algorithm is improved from the previous algorithm.

1.1 Objectives and plans

We see an urgent need to research this auction matching algorithm. However, many problems

have arisen, such as performance and any further improvement on Auction Algorithm. Hence,

we can propose the goal of our research project, for instance:

• Understand, implement the algorithm and give a straightforward way to visualise the

matching.

• Research the algorithm, particularly analyses on worst-case graph.

• Find feasible solutions to improve from the engineering perspective.

• Measure algorithm performance compared with the state-of-art algorithm in large real-

world datasets.

We approach the Bipartite matching problem from algorithm engineering perspectives.

With analyses from worst-case graph, we will be able to design an improved auction matching

algorithm. In practice, the improved algorithm should produce better solutions than the New

Auction Algorithm.

In Chapter 2, we formally introduce the Greedy algorithm and definitions relating to

matching problems. We also mention the state-of-the-art (Edmond’s ) matching algorithm, as

it will be one of the benchmarks for comparison in the experimental section.

We detail and explain the Auction Algorithm. The overview analysis of the algorithm will

be shown in Chapter 3. More specifically, we will characterise the time, space, and iteration

complexity and the proof of correctness of the algorithm.

In Chapter 4, we present some of the challenges we faced in creating an efficient C++

implementation of both the origin matching algorithm and our improved matching algorithm.

In addition, some methods of pre-processing the data and visualisation are also presented in

this Chapter.

Chapter 5 contains analyses of the worst-case graph. We will analyse the properties of

algorithm in the beginning rounds of iterations. Based on analyses, we then propose optimisation

solutions in next Chapter.

Chapter 6 will compare the performance of our optimised Auction Algorithm, Auction

Algorithm, and build-in (Edmond’s) algorithm across 15 different data sets. In addition, we

will show test results in practice to discuss the advantages and disadvantages of optimised

algorithm.

2



CHAPTER 1. INTRODUCTION

Lastly, the implementation code and visualisation of the Auction Algorithm are available

[here]. In the appendix, we show results of the algorithm applied to two different graphs, as

well as the two corresponding public video links.

3
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Chapter 2

Preliminaries

Definition 2.1 (Matching). A matching M ∈ E in a graph G = (V,E) is a subset of

vertex-disjoint edges, i.e. for every v ∈ V : |{ab ∈M : a = v or b = v}| ≤ 1.

It is perfect if every vertex is contained in matching M .

It is maximum if matching achieve its largest size.

Note that: We only focus on the unweighted graph.

Definition 2.2 (Bipartite). A graph G = (V,E) is bipartite if V can be partitioned into disjoint

sets A and B which contain no edges.

Here is an example of bipartite matching. The red lines show the Maximum Matching. In

the Auction Algorithm, the nodes in Set A also called bidders, and the nodes in Set B are

called items.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

SetA SetB

Figure 2.1: An example of bipartite matching
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CHAPTER 2. PRELIMINARIES

Lemma 2.1. A graph is bipartite if and only if it has no odd-length cycle.

Definition 2.3 (Approximation function). Let M∗ be a Maximum Matching and let M be an

arbitrary matching in G. Then, for 0 ≤ c ≤ 1, M is a c-approximate matching if:

|M | ≥ c · |M∗|

Greedy Algorithm [Algorithm 1] plays an important role in matching, since it is the best

one-pass streaming algorithm known for Maximum Matching. There are many improvement

works based on this algorithm in the matching problem. Further, this algorithm constitutes a

semi-streaming algorithm with an approximation factor of 1/2.

Algorithm 1: Greedy Algorithm for matching

Data: G, Graph, a set of edges
Result: M , Matching, a set of edges
M ← ∅;
while there has an upcoming edge E = {u, v} ∈ G. do

if u and v have not yet been matched then
M = M + {u, v};

end
Remove the edge E from G;
Find next edge E;

end

Definition 2.4 (Graph Stream). A Graph stream is an input of edges in sequence, ei1 , ei2 , ..., eim ,

where eij ∈ E and i1, i2, ..., im is an arbitrary permutation of [m] = {1, 2, ...,m}.

Definition 2.5 (Semi-Streaming Algorithms). A Semi-Streaming Graph Algorithms computes

over a graph stream using less than O(n · ploy log(n)) bits of space.

Through our research, we now know that multi-pass algorithms can improve greedy algo-

rithms [9] [8]. For example, 2-pass algorithm was proved by Konrad in 2018. It increases the

approximation ratio from 0.5 to 2−
√
2 ≈ 0.5857; 3-pass achieved the ratio to 0.6067.

Definition 2.6 (Augmenting path). Given a matching M in a bipartite graph G, an augmenting

path for M is a path P = v0 . . . vk such that:

• {vi, vi+1} ∈M for all odd i;

• {vi, vi+1} /∈M for all even i;

• v0, vk /∈
⋃

e∈M e .

5



CHAPTER 2. PRELIMINARIES

In C++, the boost graph library[14] contains the state-of-art algorithm called Edmond’s

maximum cardinality matching, introduced by Hopcroft and Karp [7]. We will also call it

built-in algorithm in later chapters. The built-in algorithm’s general idea is to use greedy

(breadth-first search) algorithm to find the augmenting path. An implementation by Micali and

Vazirani [12] has running time to O(
√
|V ||E|). We do not expand on this algorithm here, as it

is only a base benchmark. See the reference for further details.

Algorithm 2: Edmond’s Algorithm for matching

Data: G, Graph, a set of edges
Result: M , Matching, a set of edges
while G is not empty do

pick t in G;
queue.push(t);
M ← ∅;
M .add(t);
while queue is not empty do

v ← queue.pop;
for Every neighbours w of v do

if w not in M and w matched then
M .add(w);
M .add(mate(w));
queue.push(mate(w));

else if w in M and even-length cycle detected then
continue ;

else if w in M and odd-length cycle detected then
contract cycle ;

else if w in G then
expand all contracted nodes ;
reconstruct augmenting path ;
invert augmenting path;

end

end

end

Finally, we define the performance of a graph streaming algorithm in this project.

Lemma 2.2. The Performance of algorithm is measured by its space usage, number of iterations

complexity.

2.1 Summary of Chapter

This chapter introduces the preliminaries associated with the auction matching algorithm, and

we also present the best current matching algorithms.

6



CHAPTER 2. PRELIMINARIES

The definitions and theories in this chapter are sourced from [[11], [6], [4], [12]]. For reasons

of space, we will not discuss other detailed definitions here, e.g. O notation, but if necessary,

check the reference.

7



Chapter 3

Explanation of Algorithm

Auction algorithms are a worth-thinking method of bipartite matching algorithms that interpret

the challenge as choosing one item in an auction that maximizes happiness and assigning it to

bidders. It was firstly introduced by Demange, etc. [5] in 1986 in the area of economics. After

that, more auction algorithms were studied in area of optimization then [[13],[1]].

In 2021, Sepehr Assadi and S. Cliff Liu improved the previous best auction matching

algorithm, reduced space complexity and the number of iterations [2]. It states that suppose

that in each iteration of the new auction algorithm, select a maximal match by a greedy

algorithm in the subgraph consisting of unassigned bidders and all of their lowest-priced items;

after that, this algorithm stops it passes with O(1/ϵ2) iterations and (1 − ϵ) approximation.

More details show below. [Algorithm 3]

3.1 Explanation of Auction Algorithm

• The input data is a set of vertices from Graph G, The input data is also divided into set

A (bidders) and set B (items).

• In line 3, k is the number of iteration, it requires 2
ϵ2

iterations.

• In line 4, D is the union of bidders’ demanding set, initially, D and Dbidder set to ∅.

• In line 7, Dbidder is the demanding set of bidder, contains bidder’s every neighbour items

with minimal price and price[item] < 1.

• In line 8, any maximum matching can be derived by the greedy algorithm, 2-pass

algorithm, or any other optimised algorithm.

• In line 11, check if there is an edge in M before. If the edge exists, the previous owner is

the bidder in that edge connected to item.

8



CHAPTER 3. EXPLANATION OF ALGORITHM

Algorithm 3: New Auction Algorithm for bipartite matching

Data: G = (A ⊓B,E)
Result: M , Matching, a set of edges

11 For each bidder ∈ A, let a[bidder] =⊥;
2 For each item ∈ B, let price[item] = 0;
3 for k ← 1 to ⌈ 2

ϵ2
⌉ do

4 D = ∅ =
⋃
Dbidder;

5 for bidder in bidders do
6 if a[bidder] =⊥ then
7 Dbidder = argmin item∈N(bidder),priceitem<1Pj ;

8 Mk be any maximal matching of D;
9 for {bidder, item} ∈Mk do

10 a[bidder] = item;
11 if item has previous owner then
12 bidder′ = previous owner of item;
13 a[bidder′] =⊥;
14 Remove {bidder′, item} from M ;

15 price[item] = price[item] + ϵ;
16 Add {bidder, item} in M ;

17 Return the M ;

3.2 Example of Algorithm

See Appendixes [A]. Here is a visualization of this algorithm, showing how the algorithm works

on 16 nodes, 64 edges, random graph.

3.3 Theoretical Analysis on General Bipartite Graph

In this section, we study the analyses of New Auction Algorithm working on the general bipartite

graph [2]. There is a latter section that includes the analysis of New Auction Algorithm working

on Semi-complete (worst-case) graph. The theoretical analysis of this algorithm will be discussed

in four directions, namely Space Complexity, Number of Iterations, Dependency of ϵ, and Proof

of correctness. We will start with some definitions and observations.

In this section, we study the analyses of New Auction Algorithm working on general bipartite

graph [2]. The theoretical analysis of this algorithm will be discussed in four directions, namely

Space Complexity, Number of Iterations, Dependency of ϵ, Proof of correctness. We will start

with some definitions and observations.

Definition 3.1 (value of a bidder). For any bidder ∈ bidders, define the value of bidder for

items as function vbidder : R→ 0 or 1 where vbidder(i) = 1, if i ∈ N(bidder) and vbidder(i) = 0

otherwise.

9



CHAPTER 3. EXPLANATION OF ALGORITHM

Definition 3.2 (utility of a bidder). Define the utility of a bidder when given item abidder as

ubidder = vbidder(abidder)− priceabidder , namely, the value of allocated item abidder for the bidder,

minus the price that bidder has to pay for the item; the utility of an unallocated bidder bidder

is ubidder = 0

Definition 3.3 (ϵ− happy). We define a bidder ∈ bidders is ϵ− happy, if and only if ubidder ≥
vbidder(i)− pricei − ϵ for all i ∈ N(bidder), i.e., changing the allocation of bidder to any other

item does not increase the utility of bidder by more than ϵ.

As we defined, in each pass of the auction algorithm, both allocated bidders and unallocated

bidders with empty demanding sets are ϵ− happy. Each allocated bidder picks the minimum

price item in its neighbourhood and increases its price only by ϵ. Thus, the price of items is

monotonically increasing. Every item in the neighbourhoods of an unallocated bidder with an

empty demanding set has price 1. Finally, picking that item cannot increase the bidder’s utility

by more than ϵ. We use µ(G) to denote the size of maximum matching G.

3.3.1 Space Complexity

The previous best algorithm [1] achieved the space of O(n/ϵ). This algorithm has space

complexity O(n), only needs to process and store the following properties, which clearly show

this algorithm has space of O(n).

• The prices for each item is O(n).

• The allocation of bidder (in array of a) is O(n).

• Demanding set is O(n).

• Using the greedy algorithm for finding the maximum matching in O(n) and One-Pass.

3.3.2 Number of Iterations

From Algorithm 3, it clearly shows it has 2
ϵ2

iteration, which is O( 1
ϵ2
).

The method of proof considers the sum of price of all items, and the sum of price of

demanding set of bidder. Thus, we define

Φbidders :=
∑

bidder∈Maximum Matching

min
j∈N(bidder)

pricej , Φitems :=
∑

j∈items

pricej .

Since the price is between 0 and 1, our value of sum functions will both be larger than 0 and

smaller than µ(G). In each iteration, the new matching found will update price and allocation;

every new matching will increase ϵ to the functions.

10



CHAPTER 3. EXPLANATION OF ALGORITHM

Consider any iteration of the auction wherein at least ϵ×µ(G) bidders in Maximum Matching

are not ϵ − happy. As such, Φbidders + Φitems increases by ϵ2 × µ(G) in this iteration. The

maximum value of two function is 2× µ(G), thus, we have only 2
ϵ2

such iterations.

However, we will show that this number is reduced in the later chapters, but we can provide

the following lemma.

Lemma 3.1. There exists an iteration that at least (1−ϵ)×µ(G) bidders in maximum matching

are ϵ− happy.

3.3.3 Dependency of Epsilon

The space complexity of our algorithm has no dependence on ϵ. While the ϵ does impact on two

things, first is the percentage of answers, as well as the number of iteration. The former impact

satisfies feature of semi-streaming algorithm. The effect of the latter on number of iterations is

due to ϵ controlling the increased price. The smaller the ϵ we set, the more matching we can

get, but the more iterations we need to process.

General speaking, the dependency of ϵ is low, it is also a upper/lower bound for these

properties, for example to get 1− ϵ of maximum matching, we can choose a slightly bigger ϵ, in

next few chapters we will show more information about these, based on our experiments and

analyses.

3.3.4 Proof of Correctness

Consider if bidders in Maximum Matching become ϵ − happy in the auction, then the final

matching M achieves a (1− ϵ)-approximation. We provide another lemma to show the proof

of correctness. By the previous definition of ϵ− happy, and summing all over the utilities of

ϵ− happy bidders.

Note that, the o function mentioned below represents the allocation to the certain bidder.

We have the following equation:

∑
bidder∈ϵ−happy bidders

ubidder ≥
∑

bidder∈ϵ−happy∩Maximum Matching

ubidder

≥
∑

bidder∈ϵ−happy∩Maximum Matching

(vbidder(o(bidder))− priceo(bidder) − ϵ)

≥ (1− 2ϵ) · µ(G)−
∑

bidder∈ϵ−happy∩Maximum Matching

(priceo(bidder))

11
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Meanwhile, we also have following equation on the other hand:∑
bidder∈ϵ−happy

ubidder =
∑

bidder∈ϵ−happy∧abidder ̸=⊥
(vbidder (abidder)− priceabidder)

≤ |Maximum Matching| −
∑

bidder∈ϵ−happy∧abidder ̸=⊥
priceabidder

= |Maximum Matching| −
∑

j∈items

pricej

By combining the previous two equations, we can get the number of the maximum matching:

|Maximum Matching| ≥ (1− 2ϵ) · µ(G) +

 ∑
j∈items

pricej −
∑

bidder∈ϵ−happy∩Maximum Matching

priceo(bidder)


≥ (1− 2ϵ) · µ(G)

Lemma 3.2. Suppose at the end of iteration of the auction algorithm, (1− ϵ) · µ(G) bidders in

maximum matching are ϵ− happy. Then, the final matching M has size at least (1− 2ϵ) · µ(G).

3.4 Summary of Chapter

In this chapter, we introduce the auction algorithm and give an example. In addition, we learn

several properties of the algorithm, such as space complexity and epsilon dependence.

Also, based on the two lemmas, we show proof of correctness. The new auction algorithm

can find a (1− ϵ)-approximate matching in O( 1
n2 ) iterations.

However, most of our explanations are based on the ordinary bipartite graph, and in the

subsequent chapter, we give a more in-depth discussion of the worst-case graphs.
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Chapter 4

Implementation Details

In the last chapter, we introduced the algorithm and its theory. To have a better understanding

of this algorithm, we programmed this algorithm. Our implementation environment is C++.

We used the Boost Graph Library [14] for the baseline matching algorithm and base graph

structure (adjacency-list). Our real-world dataset originated from the Snap dataset [10].

We created a preprocessing script that changed the node ID to be ordered.

Moreover, some optimisation options are also proposed here. We only include essential code

here, to see the complete code, please check the [link here].

4.1 Preparation of the dataset

Most datasets are sorted by the ID of two nodes (starting from 0) in the text file. However,

there are some datasets that are not; for example, ego-Gplus is a Google plus social network

with 107,614 nodes and 13,673,453 edges.

A more critical issue is that the google plus dataset store node IDs as 21 digits, which would

be too large for integer (even long long structure) wasteful when processing the data.

Thus, we have implemented a Python script that changes the order of node IDs in the

dataset by simply iterating graph and using hash table.

dic = dict()

while readline ():

a,b = line.split ()

if a not in dic:

dic[a] = num

if b not in dic:

dic[b] = num

num += 1

writeline ()

Also, both the real-world dataset from the SNAP library and most random generated

datasets are not bipartite graphs. After creating graphs, we applied the deletion process to

13
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CHAPTER 4. IMPLEMENTATION DETAILS

make them bipartite graphs. The source code is available following. We created a list called

bipartite to store whether it is in set A or set B, then disconnected the edge from the same set.

// Set the b i p a r t i t e f o r every nodes .

for ( node ID in every nodes ) {
b i p a r t i t e [ node ID ] = int ( rand ()%2) ;

}
//De le te the edge from same b i p a r t i t e .

for ( edge ID in every edges ) {
i f ( b i p a r t i t e [ edge ID . s t a r t ] == b i p a r t i t e [ edge ID . end ] ) {

de l e t e edg e ( )

}
}

4.2 Data Structure

During completing the code, the optimization of the data structure is one of the critical steps

that affect the algorithm’s performance. More precisely, we need to pay attention to how to

find the corresponding allocation and the price quickly.

In designing this structure, three versions have been completed. The first is the most basic

array structure. The running time to find the mapped value is exponential time with iteration.

Even though we added the early interruption, it still behaves slowly.

Thus, it is necessary to improve the original data structure. Our first improvement was

changing the array to Hash Map. Hash Map can theoretically achieve the O(1) in time complexity.

In C++, Map is a sorted associative container that contains key-value pairs with unique keys. It

is able to store and combine a pair of data. We set allocation and price in two maps to store

their values with their node IDs.

In the final version of mapping value, we inserted two maps into our graph. This process

reduces the space for storage.

In addition, it needs to deal with big data as a streaming algorithm. In order to provide

enough space for data, we have expanded all data types. For example, increasing 4 bytes signed

integer types to 8 bytes unsigned long long int types. Now, we are able to process bipartite

graphs with a size less than 1.8× 1019 if we have enough time. For a larger graph, we can break

the number into string structure, but we do not discuss it here, as it is not relevant to our

project.

While processing the graph, we often need two iterators, edge iterator and vertex iterator,

respectively. Both are built from the forward (bidirectional) iterator, and we use a for loop with

two iterators to control the ending. We use the following code to iterate the graph.

14
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// I t e r a t e the v e r t i c e s

g r aph t r a i t s<vec to r g raph t > : : v e r t e x i t e r a t o r vi , v i end ;

for ( boost : : t i e ( vi , v i end ) = v e r t i c e s (Graph ) ; v i != v i end ; ++vi )

// I t e r a t e the edges

g r aph t r a i t s<vec to r g raph t > : : e d g e i t e r a t o r e i , e i end ;

for ( boost : : t i e ( e i , e i end ) = edges (Graph ) ; e i != e i end ; ++e i ){
long long s = source (∗ e i , Graph ) ;

long long t = ta rg e t (∗ e i , Graph ) ; \\ s , t are two node ID o f edge e i

}

4.3 Iteration Number and Epsilon

Finding the earlier break is another significant improvement. The algorithm will repeat 2
ϵ2

times.

We can stop the algorithm directly when the demanding set is empty from an engineering point

of view. We can apply a terminate step to this algorithm because when the algorithm has no

demanding set, we cannot find any new matches, then the image will not have any updates,

and there is no demanding set in the next round.

The ϵ is a key variable to control the number of iterations as well as the price of increase. In

this auction algorithm, the number of matching grows very slowly, especially in later iterations.

Thus, we have arranged an experiment using adjustable epsilon. The primary strategy is dividing

the epsilon into four parameters as follows.

• Based epsilon gives a small enough epsilon which can get every answer, say 1
n/2 .

• Iteration threshold is a parameter that controls increment frequency, here we set it to

3. But if there was increment, we set Price back to the based epsilon. For example, if

the threshold is reached without three iterations growing in our code, the procedure for

aggressive epsilon is triggered afterwards.

• Aggressive factor indicates the increase method and the increase factor. To be more

specific, if this aggressive factor smaller than 1, add it to the current Price epsilon;

otherwise, multiple it to current Price epsilon.

• Price epsilon controls the increase of the price of the item each time.

15
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p r i c e e p s i l o n = ba s ed ep s i l on ;

for ( every i t e r a t i o n ){
i f ( p r i c e e p s i l o n < 1 and a g g r e s s i v e f a c t o r <1){

i f ( no changes in l a s t 3 i t e r a t i o n ){
p r i c e e p s i l o n += ag g r e s s i v e f a c t o r ;

}
else {

p r i c e e p s i l o n = ba s ed ep s i l on ;

}
}
else i f ( p r i c e e p s i l o n < 1 and a g g r e s s i v e f a c t o r >=1){

i f ( no changes in l a s t 3 i t e r a t i o n ){
p r i c e e p s i l o n ∗= ag g r e s s i v e f a c t o r ;

}
else {

p r i c e e p s i l o n = ba s ed ep s i l on ;

}
}
. . .

. . .

p [ item ] += p r i c e e p s i l o n ;

. . .

. . .

}

The code above shows how we program the aggressive epsilon, some of them using multiplication

and others using more aggressive addition. Overall, this method combined with a suitable

parameter improves the program’s running time, though the effect is not apparent and it has a

crucial limit. More specific results are shown in Chapter 6.

4.4 Maximal Matching Improvement

In Chapter 3, we introduced the new auction algorithm, and in its line 8, we select the Mk

from the demanding set as the maximal matching. We need to consider how to choose a

suitable maximal matching algorithm. We firstly apply the edge first greedy algorithm. More

specific, iterating every edge if neither point has been visited before. We add the edge into the

final matching, and mark both vertices as visited.

16



CHAPTER 4. IMPLEMENTATION DETAILS

bool v i s i t e d [ s i z e o f graph ] ;

f i l l ( v i s i t e d [ every element ] , fa l se ) ;

for ( every edge ( e i ) in M k){ // I t e r a t i o n o f edges

long long s = source (∗ e i , M k ) ;

long long t = ta rg e t (∗ e i , M k ) ;

i f ( v i s i t e d [ s]== fa l se and v i s i t e d [ t]== fa l se and s != t ){
v i s i t e d [ s ]=true ;

v i s i t e d [ t ]=true ;

add edge ( s , t , f i na l mat ch ing ) ;

}
}

}

Furthermore, when dealing with the worst case, we simulate selecting the reversed order of

edge, which means we aim to find the least number of maximum matching each iteration. This

operation does not affect the correctness of the algorithm, but it will influence the run-time in

practice.

bool v i s i t e d [ s i z e o f graph ] ;

f i l l ( v i s i t e d [ every element ] , fa l se ) ;

for ( every v e r t i c e ( v i ) in M k){
long long s = ∗ v i ;
vector<long long> v e c t o r t ;

v e c t o r t . c l e a r ( ) ;

for ( every out edges ( e i ) from v e r t i c e ( v i ) in M k){
long long t = ta rg e t (∗ e i , M k ) ;

v e c t o r t . push back ( t ) ;

}
for ( v i s i t every t from ve c t o r t in r eve r s ed order ){}

i f ( v i s i t e d [ s]== fa l se and v i s i t e d [ t]== fa l se and s != t ){
v i s i t e d [ s ]=true ;

v i s i t e d [ t ]=true ;

add edge ( s , t , f i na l mat ch ing ) ;

}
}

}
}

4.5 Visualization

We use Gnuplot to draw graphs, and we import this extension package into our program to

directly display and analyze the performance of our algorithm.

We also imported the LATEX Tikzpicture package to illustrate the progress of the algorithm

in each iteration. Finally, we use FFmpeg to convert PDF files to video and publish the result on

the public website.
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4.6 Summary of Chapter

This chapter shows the challenges we encountered when writing the code and presents many

feasible methods to improve the code. We will experiment with these improvements and discuss

them in the last chapter.
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Chapter 5

Analysis on Semi-Complete Graphs

Apart from the research already done in Chapter 3, random graphs and real-world data are not

suitable for theoretical analysis. We also performed a worst-case analysis of the algorithm in

this Chapter.

Definition 5.1 (Semi-Complete graph). Semi-Complete graph also named the half graph. A

bipartite graph (X,Y,E) is a Semi-Complete graph (half graph) if its vertices can be numbered

x0, .., xn−1 and y0, .., yn−1 such that xi is adjacent to yj iff i ≤ j. see the following picture of an

example with 32 nodes.
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Figure 5.1: An example of 32 nodes Semi-Complete graph
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Semi-Complete graphs is the most difficult scenario for Auction Algorithm. Because, thinking

about the worst case of the greedy algorithm, it will increase the size of the current image by

half each time, while the Semi-Complete graph can only increase the size of the current image

by half of the current image size each time.

The Semi-Complete graph has a unique solution, which is the perfect matching. It is easy

to check with induction: every node xn connects to the node yn, and the remaining vertices

form another half graph. Moreover, every bipartite graph with a perfect matching is a subgraph

of a Semi-Complete graph.

5.1 Analysis in First Three Iteration

The Auction Algorithm has a particular similar pattern for every Semi-Complete graph. To

avoid the rounding problem, considering a large number of nodes equals the power of two. The

analyses of these iterations illustrates how the algorithm works. We start with the beginning

iteration, as the example of n nodes below. To better understand the algorithm, we also present

images on 32 nodes Semi-Complete graph.

• First Iteration In the first iteration, the state of matching has following properties:

1. The number of matching in first iteration is n
4 , which is also 50% of maximum

matching.

2. Node i matches to n− 1− i, where i = 0, 1, 2, .., n4 − 1.

3. Price of every matched item are ϵ, rest unmatched item are 0. The sum of price is
nϵ
4 .

• Second Iteration In the second iteration, the state of matching has following properties:

1. The number of matching in second iteration is n
4 , which is also 50% of maximum

matching. This number has not increased from last iteration.

2. From the last iteration, the nodes in set A from n
4 to n

2 are unallocated bidders. By

searching their demanding set, minimum price item and using the greedy algorithm,

the maximum matching is n
8 edges, they are nodes i in set A connected to n+ n

4 −1−i
in set B, where i = n

4 ,
n
4 + 1, ..., n4 + n

8 − 1.

3. Edges i to n− 1− i will disconnected, where i = 0, 1, 2, .., n8 − 1. In the other words,

half of matching from last iteration will be disconnected.

4. There are three types of price: 0 for nodes n
2 to n

2 + n
4 − 1; ϵ for nodes n

2 + n
4 to

n
2 + n

4 + n
8 − 1; 2ϵ for nodes n

2 + n
4 + n

8 to n− 1. The sum of price is 3nϵ
8 .
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Figure 5.2: Matching state and price in the first iteration
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Figure 5.3: Matching state and price in the second iteration
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• Third Iteration: In the third iteration, the state of the matching has following properties:

1. The number of matching in third iteration is n
4 + n

8 , which is also 75% of maximum

matching.

2. From the last iteration, the nodes in set A from 0 to n
8 − 1 and from n

4 + n
8 to n

2 − 1

are unallocated bidders.

By greedy algorithm, the maximum matching are n
8 + n

16 edges.

n
8 for nodes i in set A connected to n− n

4 − 1− i in set B, where i = 0, 1, ..., n8 − 1;

and n
16 for nodes i to n+ n

4 + n
8 − 1− i, where i = n

4 + n
8 ,

n
4 + n

8 + 1, ..., n2 −
n
16 − 1.

3. Edges with nodes i to nodes n+n
4−1−i will disconnected, where i =

n
4 ,

n
4+1, ..., n4+

n
16 .

4. There are four types of price: 0 for nodes n
2 to n

2 + n
4 − 1; ϵ for nodes n

2 + n
4 to

n− n
8 − 1; 2ϵ for nodes n− n

8 to n− n
16 − 1; 3ϵ for nodes n− n

16 to n− 1. The sum

of price is 9nϵ
16 .
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Figure 5.4: Matching state and price in the third iteration

• Rest of Iterations

Figure 5.5 shows how the matching changes in subsequent iterations. In addition, we

added information to the graph, such as the percentage completion and the price of each

item.
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Figure 5.5: Matching state and price in the rest iteration
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As the iterations increase, it is not easy to go any further in terms of specific values of

n. However, through the theoretical analysis of previous iterations and the presentation of

images, it is easy to see that the algorithm is constantly turning a large image into multiple

small images. Thus, we presume a pattern for subsequent iterations and give the following

observations.

Definition 5.2 (First Stage iteration). We define the first stage iteration as the first correct

matching to the final state of matching, in other words, the first time node n
2 − 1 connected

to node n− 1. Also, if a graph is of size 2 to the n-th power, we will reach the First Stage of

iteration at the n-th iteration.

For example, in 32 nodes Semi-Complete graph, the First Stage iteration is iteration 5 since

it is the first time node 15 matches node 31.

Lemma 5.1. The prices of the item are monotonically increasing. The smallest price (first

item) is always 0 except the last iteration; the largest price (last item) is strictly less than the
nϵ
2 .

Lemma 5.2. From the algorithm beginning to the First Stage iteration, the price of last item

(nodes n− 1) equals its iteration times ϵ.

The price of the last item does not follow the pattern after the First Stage iteration. The

algorithm looks for the smallest item in the unallocated bidder. The last item not only has the

largest price, but it is relatively stable as soon as the First Stage iteration is reached, after then

it grows intermittently, rising to less than nϵ
2 .

In the table below, we calculated and listed the theoretical performance of the algorithm,

including, for each iteration, the unallocated bidder, the number of new matching, the number

of matching to be disconnected, the total price, and the total number of matching. Note that

the data here do not consider the rounding problem. In other words, this table is only true for

very large graphs with a number of points be the power of 2.
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No.
Iteration

No.
unallocated

bidders

No.
new matching
(size of Mk)

Matching
needs
to be

disconnected
Total price

No.
Total matching

1 n/2 n/4 0 nϵ/4 n/4
2 n/4 n/8 n/8 3nϵ/8 n/4
3 n/4 3n/16 n/16 9nϵ/16 3n/8
4 n/8 3n/32 3n/32 21nϵ/32 3n/8
5 n/8 7n/64 7n/64 49nϵ/64 3n/8
6 n/8 11n/128 11n/128 109nϵ/128 3n/8
7 n/8 23n/256 15n/256 241nϵ/256 13n/32
8 3n/32 39n/512 39n/512 521nϵ/512 13n/32
9 3n/32 55n/1024 55n/1024 1097nϵ/1024 13n/32
10 3n/32 151n/2048 151n/2048 2345nϵ/2048 13n/32

Trend
analysis

Decreasing
Decreasing
unsteadily

Decreasing
unsteadily

Increasing Increasing

Table 5.1: Variable of algorithm changes in first 10 iteration

Finding new matching is getting more and more difficult in latter iteration, also matching

increments will also be less and less in later iterations. The above table gives us a description

of the trend in terms of numerical increments, in the longitudinal direction. And horizontally it

also reveals some of following correlations.

Lemma 5.3.

• The number of unallocated bidders equals to the number of all items minus the number of

total matching from last iteration.

In the table, column 5 equals n/2 minus the next row of column 1.

• The number of unallocated bidders is always bigger or equal than the number of new

matching, and both of them are always bigger or equal than the number of matching needs

to be disconnected.

In the table, column 1 ≥ column 2 ≥ column 3.

• The number of new matching (size of Mk) is equal to the number of matching that needs

to be disconnected, except the iteration has increased the total matching, such as iteration

1, iteration 3 and iteration 7.

• The total price equals the price of the last iteration plus ϵ times the number of new

matching.

In the table, every unit in column 4 = its last line + column 2 ×ϵ.
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5.2 Analysis in Percentage of Matching

As a data streaming algorithm, the Auction algotirhm has many advantages in some cases over

the traditional matching algorithm (Edmond’s matching Algorithm). For example, traditional

algorithms cannot process data if we only need partial answers. To be more specific, we can

give an initial summary toward iteration 7 (toward 80% of matching) based on the analysis

and calculation in the last section.

Iteration Percentage of total Matching Increment

1 50% 1/2
3 75% 1/4
7 81.25% 1/16

Table 5.2: The relation between percentage of matching and number of iteration

Thinking about the final iteration, we will only add the last edge (node 0 to node n/2,

horizontal matching). There is a huge number of iterations that will be waiting before it. The

Table 5.2 includes every iteration before 7, which has the increment of matching.

We only calculate toward iteration 7. Further iteration performance is shown in the experi-

ment Chapter 6. Using our analysis of the Table 5.2, we tentatively believe that this growth will

be O( 1
cd×iteration ) slowing down the increment; also, the increment happened with O( 1

cd×iteration )

frequency, the c, d here denote two constant.

Moreover, measuring this exponential relation can be actually done by applying a few

numerical analysis methods. We set an experiment in the next Chapter.

In general, new matching is becoming increasingly tricky to outcome, in terms of the number

of increases and the frequency of increases. Since it will be extremely low efficiency at later

iterations, thus, this algorithm is not particularly suitable for perfect matching.

5.3 Analysis of Pattern

When performing greedy matching, we consider the worst-case scenario, i.e. the least number

of matching. This number is 1/2 of the original graph. We set the matching to connect to its

achievable largest price nodes. Then, there will always get some regular patterns. We define

them as following.

Definition 5.3 (Crossover sub-matching). The Crossover(Gc) is a sub-graph and sub-matching

of G. In Gc, every node i+ s is connected to node k − i− s.

The sum of two points is denoted as k, a constant between n/2 to (3n− 2)/2;

s is denoted as the size (number of matching) of this crossover.

Lemma 5.4. If the pattern has value k, but node ID in set B minus node ID in set A not

equal to n/2 or n/2 + 1, then the we call this crossover shift.
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The following Figure 5.6 shows an example of 2 crossovers. During the algorithm process,

the algorithm has only one crossover at the first iteration, while at the completion, there are

n/2 of such shapes with size 1. It is very similar to the idea of merging. We think it is because

the core of the algorithm for finding matching uses the greedy algorithm, and the matching can

grow by 1/2 the size of the subgraph each time.
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Figure 5.6: Two Crossovers in graph

See the first three iterations from previous graphs, the crossovers have no shift. However, this

is not always the case in subsequent iterations. For example, in the fifth iteration, see the Figure

5.7, the second crossover has a shift of n/32, but in subsequent iterations, it calibrates itself.

When all the offsets have been calibrated, a new matching will appear in the next iteration.

Furthermore, the graph will converge to a perfect matching as the iterations increase. The

first to finish must be the matching at the bottom edges. It is because we default to finding the

smallest item in the demanding set first.
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Figure 5.7: Second Crossover shifted

5.4 Analysis of Epsilon

We are now starting our research on epsilon. In this algorithm, epsilon is also set to the value

of item increase, and if the total value exceeds 1, it no longer goes into the demanding set. We

will know how to choose a suitable epsilon through this part analyses.

From analyses in Chapter 3, we introduced that Auction Algorithm will terminate in a

finite number O(1/ϵ2) of steps. The number of iterations required increases significantly as ϵ

decreases. Conversely, to obtain the most answer at termination, the value of epsilon must be

below a certain threshold.

As Figure 5.5 shows, the prices of items are ascending. The price of the last item will be

nϵ/2 at most, and this value should not exceed 1. The algorithm terminates otherwise. Thus

we can get the following lemma.

Lemma 5.5. The ϵ has a lower bound (0). Note that, 0 is not included.

Lemma 5.6. The ϵ below than 1
n/2 can find every matching. But it is not the largest upper

bound for ϵ.

In chapter 3, it was presumed that last item’s price is nϵ/2. However, in figure 5.5, this value

is smaller than the nϵ/2. Thus, 1
n/2 is not the largest upper bound for ϵ. In another instance, in

the Semi-Complete graph with 10 nodes, we can find every matching if ϵ can be any value in

(0, 1/4), instead of (0, 1/5).
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5.5 Summary of Chapter

The Semi-Complete graph is the most challenging dataset to deal with in the Auction Algorithm.

We address the theoretical analysis of this algorithm from several perspectives, including the

start of the algorithm, completion, shape, and choice of epsilon. In the next section, we follow

this chapter’s conclusions and show more of our findings.
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Chapter 6

Experiments and Results

In this Chapter, we have designed several experiments to test our hypothesis, as well as prove the

theoretical analysis from previous Chapter. We will also use our Auction matching Algorithm to

produce exact solutions for some instances and provide insight into the improvement explored.

Our test environment is arm64 ARCHS CPU with frequency 3.2 GHz.

6.1 Datasets

We tested our algorithm on fifteen different datasets of bipartite matching graphs. Among them,

seven were Semi-Complete graphs, four automatically generated random graphs, and the other

four instances generated from social networks in a SNAP database.

• We test algorithms on the Semi-Complete graph to prove and discuss our conclusions in

Chapter 5 Analyses.

• We used Random graphs to test whether our prepossessing step can small random graphs.

• We finally experimented with the real-world dataset, which contains several large examples

from actual Internet companies. They were used to validate practical uses. In particular,

they were tested to see if they could be used for large amounts of data.

6.1.1 Semi-Complete Graph

The following table illustrates the information of the instances converted from the graph, along

with the various data associated with them, such as Number of Vertices, Number of Edges, and

Number of Maximum Matching. First, we show seven sets of Semi-Complete graphs sorted

from small to large by a factor of 2. See Table 6.1.

By looking at Table 6.1, it basically meets the expectations of our analysis in Chapter 5. Our

Auction Algorithm is a (1− ϵ) data streaming algorithm. As discussed in the implementation

chapter, our improvement allows the algorithm to exit earlier if the demanding set is empty.
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ID Type Nodes Edges
Number of

Maximum Matching
80% of

Matching
90% of

Matching
95% of

Matching

Number of
Iteration
to find all
matching

1
Semi

complete
32 136 16 7 14 60 60

2
Semi

complete
64 528 32 7 18 47 210

3
Semi

complete
128 2080 64 7 26 44 612

4
Semi

complete
256 8256 128 7 29 64 2966

5
Semi

complete
512 32896 256 7 30 101 9758

6
Semi

complete
1024 131328 512 7 30 90 44645

7
Semi

complete
2048 524800 1024 7 30 94 178296

Table 6.1: The result of seven Semi-Complete graphs

Thus, we can compare the iteration it needs with the theoretical iteration. We will discuss our

results in two cases, one where we get a partial answer and one where we get the full answer.

6.1.1.1 Partial matching

When ϵ = 0.2, we want 80% of the maximum matching. As Figure 6.1 shows, no matter the

size of the graph, we only need around seven iterations; Meanwhile, when ϵ = 0.1, we hope to

achieve 90% of the maximum matching. We need around 30 iterations, as Figure 6.2 shows.

The two figures below both have a converge to a specific value. However, we find oscillation

in the beginning part of 80% figure and in the 90% figure. This oscillation is because the number

of points in our graph is an integer and the percentage increase is often fractional. Nevertheless,

as long as the epsilon is greater than 0, it must eventually converge to a certain number. For

the last example, looking back at the previous table, for a larger Semi-Complete graph of 512

to 2048 points, around 100 iterations are sufficient to complete 95% of the matching.
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Figure 6.1: The relation between Size and Number of iteration to get 80% matching.
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Figure 6.2: The relation between Size and Number of iteration to get 90% matching
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Moreover, these two graphs show an essential property of the streaming algorithm, which

works perfectly for a large dataset. The algorithm has the approximation guarantee, the larger

size of the graph, the more stable number of iterations it requires. We find the number of

iterations it really required is much less than the theoretical iteration from the original algorithm
2
ϵ2
. Here, 7 and 30 less than 50 and 200, respectively.

With this finding, we have determined that the Auction Algorithm is applicable when

partial answers are desired. We build large graphs and compute the following Table 6.2 shows

the algorithm performance. Note that it will be more accurate on the large graph with the size

of power 2.

Iteration Percentage of Maximum Matching Finding

1 50%
3 75%
7 81.25%
11 84.38%
13 87.50%
18 89.06%
28 89.98%
30 91.41%
34 92.38%

Table 6.2: The relation between Percentage of maximum matching and Iteration

6.1.1.2 Perfect matching

In the two graphs below, the x-axis represents the size of the Semi-Complete graph; the y-axis

represents the number of iterations required. The number of iterations required grows very

quickly when we need to find a perfect matching.

We have plotted its upper bound 2
ϵ2

on the first graph. By our previous analysis, we can set

ϵ here to be 1
n/2 to achieve every matching. See the Figure 6.3.

In Figure 6.4, we applied one exponential regression and one polynomial regression function,

y = 87.8 ∗ 1.02x and y = 0.31 ∗ x1.87, respectively. These two functions are fitted based on the

results of size of 1 to 250 Semi-Complete graphs from small to large. By looking at these two

functions, it is clearly to verify our previous theoretical analysis of O(n2). See both functions,

the exponential function grows faster than the actual result, while function O(n1.87) clearly

grows slower than the actual result.

In general, this algorithm does not perform very well on Semi-Complete graphs. But this is

reasonable, since the Semi-Complete graph was designed separately for this algorithm. The

worst case is tougher, if we need close to the maximum number of matches, requiring a large

number of iterations. This data only requires O(n2). These two graphs also verify that this

algorithm does not have an advantage in solving exact matches.
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6.1.2 Random Graph

We also generated random graphs to simulate small samples of real-life data to test the success

of the program. See the following Table 6.3. The degree of nodes affects the required iteration.

The fully connected graph has an easy solution, same as the graph with only a few edges. By

contrast, the Semi-Complete graph is much more difficult. However, the algorithm generally

works very well on random graphs, and many cases only require a few iterations.

ID Type Nodes Edges Number of Maximum Matching 90% of Matching 95% of Matching

Number of
Iteration
to find all
matching

8 Random 128 106 44 1 3 4

9 Random 128 236 61 3 4 16

10 Random 128 681 64 1 1 5

11 Random 128 1853 64 1 1 6

Table 6.3: Results for random graph

6.1.3 Real-world Graph

Finally, we tested several graphs of the real-world dataset. Our code can be applied quickly

to most real-world graphs. When the graph is extremely large, see test ID 15 for an example,

even the build-in method cannot be completed in a few seconds. Our method can use a few

iterations to find a partial matching.

ID Type Description Nodes Edges
Number of
Maximum
Matching

90% of
Matching

95% of
Matching

99% of
Matching

Number of
Iteration
to find all
matching

12
Real
world

Twitter 1293 8175 554 1 3 6 30

13
Real
world

Facebook 4039 44008 1839 1 3 23 146

14
Real
world

Google+ 107614 6121041 42567 4 7 37 920

15
Real
world

LiveJournal 4847571 21425445
unknown

(approx. 1730000)

4 iteration
find over
1600000

11 iteration
find over
1700000

113 iteration
find over
1728000

unknown

Table 6.4: Results for real-world graph

6.1.4 Summary for dataset result

The Semi-Complete graph is a well-designed complex graph for Auction Algorithm. The number

of iterations to find perfect matching increases as the graph grows, while the number of iterations

to find partial matching converges as the size of the graph grows.
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The Auction Algorithm is perfectly working on the random graph and real-world graph.

Our method does not find all the results directly in an extremely large graph, but we can

provide part of the results first and optimise the result as the iteration grows.

6.2 Performance of improvements

After testing the dataset, our algorithm can be applied to the most non-extremely large graph.

We will continue to validate the theories and improvements we presented earlier.

6.2.1 Epsilon bound

As we mentioned in our previous study, ϵ plays a role as a parameter in the approximation

function of 1− ϵ. In the perfect matching problems, we could theoretically set ϵ to any number

greater than 0 and less than 1
n/2 . ϵ should ideally be 0, but is also a value for price increment,

0 is not appropriate. Too small ϵ will lead to a reduction in the speed of the calculation and

may cause accuracy problems in Floating-point arithmetic; ϵ can be slightly bigger than the
1

n/2 , but too large ϵ is also inappropriate and may not find every matching.

The practical result is shown in Figure 6.5. Both graphs are Semi-Complete with 32 nodes

and 16 maximum matching in the purple line.

On the upper graph in Figure 6.5, the thick green line shows the performance of the Auction

Algorithm, with ϵ set to half. This green line stops at the third iteration and gets 12 matches

greater than 1− ϵ (greater than 50%). By zooming in on the upper graph, here is another blue

line. The ϵ for the blue line is 1/8, but it has around 22 iterations and finds 15 matches. The

blue line is able to find more matching than the green line. We can also see that it takes much

iteration to process from 15 matching to 16 matching.

On the lower graph in Figure 6.5, two performances are exactly same in different ϵ. So please

zoom in to see the details. In theory, we need to set the ϵ to 1/16, but here 1/11 is also correct.

The same result is also seen for the 1024 nodes Semi-Complete graph, which theoretically

requires 1/512. However, in practical, setting ϵ be 1/250 also be able to find all the matches.

Although they both have the same progress and require the same number of iterations, the line

with larger epsilon should reduce the number of floating-point errors in the computer in terms

of engineering perspectives. We will give our comparison test before and after improvement in

later section.

For ϵ bound in general, a smaller ϵ allows the algorithm to increase the iteration further and

find more matching; the ϵ can also be slightly larger than 1
n/2 , which has the same performance

and possible to improve speed and accuracy in practical.
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Figure 6.5: The first 60 iteration of Auction Algorithm on 32 nodes Semi-Complete graph with
different epsilon
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6.2.2 Aggressive Epsilon

Not only ϵ affects the completion percentage, but it also changes the increment price. It is

difficult to get new matching in later iterations when encountering complicated graphs. Here

we give an experiment on the feasibility and the effect of using multiple aggressive epsilons

to increase their price. The detail of the aggressive strategy was discussed in the Chapter 5

implementation.
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Figure 6.6: The Auction Algorithm with aggressive epsilon on 32 nodes Semi-Complete graph

The dataset ID 6 Semi-Complete graph is selected. The green line is the based epsilon

(0.004), which can find every matching with 40000 iterations. The dark blue, light blue, and

orange lines cannot find every matching, since they terminate earlier. The yellow line performs

well not only in 90% and 95% of matching, but can achieve 90% matching. For more details,

see the following table 6.5.

In the example we tested here, we let based epsilon be 0.004, higher than the theoretical

upper bound (0.002). It is very close to its upper bound, any not mild epsilon will miss the

solution. As we mentioned before, we think it is unnecessary to have an aggressive epsilon

unless we can find a suitable strategy for aggressive.
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Aggressive Method Line color
Iteration
90% of

Matching

Iteration
95% of

Matching

Iteration
99% of

Matching

Iteration
to find all
matching

constant epsilon 0.004 Green 30 90 903 44644

aggress epsilon +0.01 Light blue 55 86 NA NA

aggress epsilon +0.001 Orange 20 56 NA NA

aggress epsilon *1.001 Yellow 20 57 323 NA

aggress epsilon *1.1 Dark blue 20 54 NA NA

Table 6.5: Aggressive method and their performance

6.3 Performance of algorithm in practical

Finally, we will show algorithms performance in time in this section. We will also compare the

Auction Algorithm with performance of the built-in algorithm and the optimised algorithm.

Each test was within a running time of 300 seconds, all units in the table 6.6 below are seconds.

Test ID
Dataset

Description
Built-in
method

Time
90% of

Matching

Time
to find all
matching

Improved
Time
90% of

Matching

Improved
Time

to find all
matching

6
Semi-Complete
1,024 nodes

0.028 0.019 0.243 0.018 0.239

7
Semi-Complete
2,048 nodes

0.182 0.048 3.103 0.047 1.137

12
Twitter

1,000 nodes
0.004 0.006 0.036 0.005 0.031

13
Facebook
4,000 nodes

0.010 0.007 0.034 0.005 0.032

14
Google+

100,000 nodes
8.544 1.872 7.231 1.683 6.529

15
LiveJournal

4,000,000 nodes

Unknown
more than
300 seconds

24.635
Unknown
more than
300 seconds

20.172
Unknown
more than
300 seconds

Table 6.6: The comparison performance of algorithm in practical (second)

For finding the perfect matching, the improved Auction Algorithm was generally better

than the original Auction Algorithm. Also, the improved algorithm was better than the built-in

algorithm. The Semi-Complete graph was the most complicated case we devised. It did not

perform as well as the built-in algorithm, apart from in test ID 14 Auction Algorithm performing

better on the large dataset.

However, if the question is only looking for partial answers, such as 90%, the Auction

Algorithm is much better (18% better in Test ID 15) than the built-in algorithm.
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6.4 Summary of Chapter

In this Chapter, we presented our experiments on 15 different datasets and collated their results.

We tested and verified our previous theories and conjectures.

It demonstrates the ability to find partial results quickly as a streaming algorithm. By

comparison, we can see that the Auction Algorithm performs better than the current state-

of-the-art matching algorithm in large dataset. Finally, the test illustrates the effect of our

improvement on the Auction Algorithm.
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Chapter 7

Conclusion

7.1 Contributions

Overall, this project taught us a wide range of details about the Auction Algorithm. The

combination of theory and practice has given us the following contributions.

Through theoretical analysis in the worst-case scenario, we simulated the first few steps

and discovered this streaming algorithm’s characteristics. We found that there is a larger upper

bound for epsilon, and it is related to the price of items; also we present some analysis of the

algorithm price and pattern.

After verifying these theoretical analyses by coding and testing, theory and practice helped

us to indicate our optimisation directions. We have improved the performance of original

Auction Algorithm from perspective of algorithm engineering. We managed to obtain an average

improvement of 12.7% compared to original algorithm with the following improvements:

• Changing the data structure to map allocation and price in O(1); Inserting these maps

into the graph to reduce space.

• Using an early exit in loop, reducing the iteration number of our algorithm.

• Using a larger epsilon to reduce computational precision and increase speed.

• Choosing the suitable aggressive epsilon can increase speed. However, note that excessive

aggressive epsilon can break the approximation function, and possible no sufficient answer

will be given.

7.2 Future work

Time has passed quickly. Our learning process has revealed that the project still has a lot of

potential for improvement:
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• More theoretical analysis.

1. Predicting the number of iterations required to find perfect matching on different size

of Semi-Complete graph. As well as the relation between the number of iterations

required and (1− ϵ) matching.

2. We found that epsilon has an unknown upper bound. We can check the price of the

last item when the matching ends. However, is it possible to predict its exact value

before the code runs?

3. Research a better time complexity algorithm for the matching problem, since the

improvement from engineering perspectives is limited.

• Improvements from engineering perspectives

1. For random graphs, algorithm lets us choose any maximum matching. Is there a

better algorithm? Currently, we use the greedy algorithm. Can we apply two-pass

matching algorithm [9] to improve the run time?

2. Many authors have mentioned that this algorithm can be extended to parallel

computing. Study how we can optimise it in parallel computing.
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Appendix A

Example of Algorithm on Random

Graph

In the next few pages, we show how Auction Algorithm working on a 32 nodes Random

Graph in each iteration. The first graph is the neighbourhood relation between Set A and

Set B. The red line in latter graph shows the matching. To see the video, please click

https://www.youtube.com/shorts/Dw-TVHN3lmc.

In the Iteration 5, we find 13 matching, it is the largest matching.
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Appendix B

Appendix Example of Algorithm on

Semi-complete Graph

In the next few pages, we show how Auction Algorithm working on a 32 nodes Semi-complete

Graph in each iteration. The first graph is the neighbourhood relation between Set A and

Set B. The red line in latter graph shows the matching. To see the video, please click

https://youtu.be/pvaFh3txBRE.

In the Iteration 60, we find 16 matching, each nodes in Set A connect to nodes in Set B, it

is the largest matching.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Iteration 59, 15 matching



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Iteration 60, 16 matching
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